Search results for "Free molecular flow"
showing 4 items of 4 documents
Effects of temperature and pressure on microcantilever resonance response.
2003
Abstract The variation in resonance response of microcantilevers was investigated as a function of pressure (10 −2 –10 6 Pa) and temperature (290–390 K) in atmospheres of helium (He) and dry nitrogen (N 2 ). Our results for a silicon cantilever under vacuum show that the frequency varies in direct proportion to the temperature. The linear response is explained by the decrease in Young's modulus with increasing the temperature. However, when the cantilever is bimaterial, the response is nonlinear due to differential thermal expansion. Resonance response as a function of pressure shows three different regions, which correspond to molecular flow regime, transition regime, and viscous regime. …
SPtsAnalysis: a high-throughput super-resolution single particle trajectory analysis to reconstruct organelle dynamics and membrane re-organization
2021
AbstractSuper-resolution imaging can generate thousands of single-particle trajectories. These data can potentially reconstruct subcellular organization and dynamics, as well as measure disease-linked changes. However, computational methods that can derive quantitative information from such massive datasets are currently lacking. Here we present data analysis and algorithms that are broadly applicable to reveal local binding and trafficking interactions and organization of dynamic sub-cellular sites. We applied this analysis to the endoplasmic reticulum and neuronal membrane. The method is based on spatio-temporal time window segmentation that explores data at multiple levels and detects th…
Observation of Knudsen effect with microcantilevers
2003
The Knudsen effect is estimated theoretically and observed experimentally using a U-shaped silicon microcantilever. Though Knudsen forces are extremely small in most cases involving microcantilevers, there exist situations where these forces can be significant and may be important in atomic force microscopy and in microelectromechanical systems (MEMS). The criteria for the presence of Knudsen forces are outlined and an analytical expression in the form of a linear function of the pressure is given for the force in the free molecular regime. The experimental results display peaks in the transitional regime while varying linearly in the molecular regime.
Design and Operation of a Windowless Gas Target Internal to a Solenoidal Magnet for Use with a Megawatt Electron Beam
2019
A windowless hydrogen gas target of nominal thickness $10^{19}$ cm$^{-2}$ is an essential component of the DarkLight experiment, which is designed to utilize the megawatt electron beam at an Energy Recovery Linac (ERL). The design of such a target is challenging because the pressure drops by many orders of magnitude between the central, high-density section of the target and the surrounding beamline, resulting in laminar, transitional, and finally molecular flow regimes. The target system was assembled and operated at Jefferson Lab's Low Energy Recirculator Facility (LERF) in 2016, and subsequently underwent several revisions and calibration tests at MIT Bates in 2017. The system at dynamic…